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A Lagrangian continuous random walk (CRW) model is developed to predict turbulent particle dispersion
in arbitrary wall-bounded flows with prevailing anisotropic, inhomogeneous turbulence. The particle
tracking model uses 3D mean flow data obtained from the Fluent CFD code, as well as Eulerian statistics
of instantaneous quantities computed from DNS databases. The turbulent fluid velocities at the current
time step are related to those of the previous time step through a Markov chain based on the normalized
Langevin equation which takes into account turbulence inhomogeneities. The model includes a drift
velocity correction that considerably reduces unphysical features common in random walk models. It
is shown that the model satisfies the well-mixed criterion such that tracer particles retain approximately
uniform concentrations when introduced uniformly in the domain, while their deposition velocity is van-
ishingly small, as it should be. To handle arbitrary geometries, it is assumed that the velocity rms values
in the boundary layer can locally be approximated by the DNS data of fully developed channel flows.
Benchmarks of the model are performed against particle deposition data in turbulent pipe flows, 90�
bends, as well as more complex 3D flows inside a mouth-throat geometry. Good agreement with the data
is obtained across the range of particle inertia.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent flows which transport particulates are quite often
encountered in a vast array of environmental, industrial, and med-
ical applications. Examples of particle-laden flows can be found in
atmospheric dispersion of pollutants, sediment transport in rivers,
drug delivery in human airways, fouling in compressor and turbine
blades, chemical pulping, nuclear fission products transport, etc.
Hence, an accurate description of particle transport is of great prac-
tical importance. While particle transport in isotropic and homoge-
neous turbulent fields has been extensively studied (Yeung and
Pope, 1989; Squires and Eaton, 1991), wall-bounded flows have
not comparatively attracted the same attention. In the latter,
boundary layers form close to the walls, and turbulence is strongly
anisotropic and inhomogeneous, which renders the problem quite
a bit more complicated. Of particular importance in boundary layer
flows is the understanding of mechanisms responsible for particle
preferential concentration (Marchioli and Soldati, 2002), which in
turn explain many macroscopic features such as the particle depo-
sition rates on the walls. The heart of the particle dispersion prob-
lem resides in modeling the random velocity fluctuations which
particles encounter along their trajectories.
ll rights reserved.
As summarized by Dehbi (2008), one can distinguish two main
families of methods to treat particle dispersion in fluid flows: Eule-
rian and Lagrangian. In the Eulerean or ‘‘two-fluid” approach, the
particles are regarded as a continuous phase for which the aver-
aged conservation equations (continuity, momentum and energy)
are solved in similar fashion to the carrier gas flow field (Zhang
and Prosperetti, 1994). The Eulerean approach is particularly suit-
able for denser suspensions when particle–particle interactions are
important and the particle feedback on the flow is too large to
ignore. The main challenge facing Eulerian-type, two-fluid ap-
proaches resides in accurately defining the inter-phase exchange
rates and closure laws which arise from the averaging procedures
(Drew, 1983). In addition, the strong coupling between the phases
renders the Eulerean approach quite delicate to handle, especially
at boundaries where the solid phase may be removed or reflected.

The Lagrangian approach (Maxey, 1987) treats particles as a dis-
crete phase which is dispersed in the continuous phase. The parti-
cle volume loading is usually assumed negligible, so that particles
have no feedback effect on the carrier gas and particle–particle
interactions are neglected. In the Lagrangian framework, the con-
trolling phenomena for particle dispersion in the field are assessed
using a rigorous treatment of the forces acting on the particle. In
general, the detailed flow field is computed first, then a represen-
tatively large number of particles are injected in the domain, and
their trajectories determined by following individual particles until
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they are removed from the gas stream or leave the computational
space. Particle motion is extracted from the time integration of
Newton’s second law, in which all the relevant forces can be incor-
porated (drag, gravity, lift, thermophoretic force, etc.). The
Lagrangian approach is computationally intensive, because it en-
tails tracking a large number of particles until stationary statistics
are achieved. On the other hand, the results of Lagrangian particle
tracking (LPT) are physically easier to interpret. Therefore, in the
following investigation, the LPT methodology is used, along with
the assumption that the dispersed phase is dilute enough not to af-
fect the continuous flow field (one-way coupling).

Many methods have been developed to take into account veloc-
ity fluctuations in the turbulent flow. In principle, the simplest and
more ‘‘physical” method is Direct Numerical Simulation (DNS)
(McLaughlin, 1989) in which turbulence is ‘‘reproduced” by solving
the transient Navier–Stokes continuity and momentum equations
on a sufficiently fine grid and with a sufficiently small time step.
In such a way, all relevant spatial and temporal scaled are resolved.
Large-Eddy Simulations (LES) (Wang and Squires, 1997) are con-
ceptually similar to DNS, except that the computational effort is re-
duced somewhat by requiring the grid to be only so fine as to
resolve the largest eddies, whereas the smaller, quasi isotropic ed-
dies are modeled. While being widely used, DNS-LES/LPT methods
remain computationally expensive, and their extension to general
geometries poses very tough and sometimes intractable computa-
tional challenges.

An alternative method, which borrows from the family of sto-
chastic models, attempts to simulate turbulence using comple-
mentary equations whereby the instantaneous turbulent
velocities are calculated from local quantities such as the mean
turbulent kinetic energy, the Eulerian time scale and the distance
to the wall. Examples of these treatments are random walk models
which have been popular due to their relative ease of implementa-
tion and reasonable computational expense.

In Discrete Random Walk (DRW) models (Gosman and Ioan-
nides, 1983), the turbulent dispersion of particles is modeled as a
succession of interactions between a particle and eddies which
have finite lengths and lifetimes. It is assumed that at time t0, a
particle with velocity Up is captured by an eddy which moves with
a velocity composed of the mean fluid velocity, augmented by a
random ‘‘instantaneous” component which is piecewise constant
in time. When the lifetime of the eddy is over or the particle
crosses the eddy, another interaction is generated with a different
eddy, and so forth. In wall-bounded flows, the original isotropic
DRW model of Gosman and Ioannides (1983) has been improved
to account for anisotropic turbulence in the near-wall regions. This
improved DRW model has been used with some success to predict
turbulent particle deposition in isothermal 2D channels (Kallio and
Reeks, 1989), in general 3D isothermal flows (Dehbi, 2008) or in
cooled pipes (Kröger and Drossinos, 2000).

Continuous Random Walk (CRW) models provide a more phys-
ically sound picture of fluid turbulence, as they represent the
instantaneous velocities in a continuous way. CRW models, which
are usually based on the Langevin equation, have been shown to
provide more realistic predictions of turbulent particle dispersion
than DRW, in particular in flows where inhomogeneous effects
are important such as mixing layers (MacInnes and Bracco, 1992)
or free shear flows (Bocksell and Loth, 2001). Hence a CRW model
will be adopted in this investigation.

One of the main goals of this investigation is to describe turbu-
lent particle dispersion in general wall-bounded geometries. Mean
flow parameters in complex turbulent flows can only be predicted
on a routine basis using standard Computational Fluid Dynamics
(CFD) tools based on the Reynolds Averaged Navier Stokes (RANS)
equations. Ideally then, turbulent particle dispersion in general 3D
geometries could be done by coupling CFD with reliable particle
dispersion models in a single application. However, as shown re-
cently by Tian and Ahmadi (2007), the use e.g. of DRW in combina-
tion with the state-of-the-art anisotropic Reynolds Stress Model
(RSM) still led to large overpredictions of particle deposition rates
in 2D parallel ducts. This is due to the fact that the RSM calculated
root mean square (rms) of the normal velocity near the wall over-
predicts the profiles determined by DNS studies, and no grid
refinement can remedy this problem. Using the same RSM-DRW
framework, Parker et al. (in press) were able to obtain dimension-
less deposition velocities that overestimated the experimental data
by less than one order of magnitude, which is the best that can be
achieved with today’s CFD codes in their default mode. Better re-
sults were however obtained when Tian and Ahmadi (2007) com-
bined the use of RSM for the mean flow field, the Langevin
equation for the turbulent fluctuations, and a DNS-supplied corre-
lation for the normal velocity rms close to the wall.

Based on the above, it becomes clear that quantitatively accu-
rate predictions of turbulent particle dispersion in general 3D
geometries can only be achieved through a substantial improve-
ment in the treatment of particle-turbulence interactions in the
boundary layer. This treatment needs to be developed and incorpo-
rated in the CFD tools in order to properly account for near-wall ef-
fects which control to a large extent the physics of particle
deposition. In this investigation, the fluid fluctuations will be com-
puted from a Langevin equation based model, which will be com-
bined with the mean flow data obtained from the Fluent 6.3 code
(Fluent, 2006). Fluent 6.3 is a state of the art code based on finite
volume methods that provides a wide choice of turbulence models
(k–e, k–x, RSM, etc). The necessary Eulerian statistics to close the
Lagrangian particle tracking model will be supplied by the avail-
able DNS databases of channel flows.

2. Particle equations of motion

Let a spherical particle be entrained in a turbulent flow. Assum-
ing only drag and gravity are significant, the vector force balance
on that particle is written as follows:

dUp

dt
¼ FDðU � UpÞ þ g 1� qf

qp

 !
ð1Þ

where the drag force per unit mass may be expressed as

FD ¼
18l

qpd2
p

CD
Rep

24
ð2Þ

In the above, U is the fluid velocity, Up is the particle velocity, qp the
particle density, qf the fluid density, g the gravity acceleration vec-
tor, dp the particle geometric diameter, l the fluid molecular viscos-
ity, and Rep the particle Reynolds number defined as

Rep ¼
dp j U � Up j

m
ð3Þ

m being the fluid kinematic viscosity. The drag coefficient is com-
puted in the Fluent code from the following equation:

CD ¼ b1 þ
b2

Rep
þ b3

Re2
p

ð4Þ

where the b’s are constants which apply to spherical particles for
wide ranges of Rep. The trajectory x(x1,x2,x3, t) of the particle is ob-
tained by integration of the following velocity vector equation with
respect to time:

Up ¼
dx
dt

ð5Þ

The expressions (1)–(5) are all one needs to compute the trajectory
of individual particles in laminar flows. The particle concentration
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and deposition are deduced in a determinist way, and the procedure
was shown by Healy and Young (2001) to accurately predict particle
dispersion. When turbulence is present in the flow, the computa-
tion of particle dispersion becomes significantly more involved as
the random velocity fluctuations do not allow for a deterministic
knowledge of particle trajectories. One then resorts to stochastic
computations of a great many trajectories with the aim to capture
‘‘average” particle dispersion. The CRW describing the model for
velocity history is introduced next.

3. The conventional Langevin equation and drift correction

The time history of carrier fluid fluctuations a particle sees as it
moves in a flow dictates to a large extend its dispersion and depo-
sition characteristics in turbulent fields. In homogenous turbu-
lence, one of the most common ways to describe fluid velocity
fluctuations in a continuous way is through the so-called Langevin
equation. This equation was proposed by Langevin in the early
1900’s to model the random Brownian motion of very small parti-
cles. The change in the particle velocity with time is assumed to be
comprised of a damping term which is proportional to velocity,
and a random forcing term that has zero mean. Obukhov (1959)
extended this concept to fluid velocity fields in homogeneous tur-
bulence, and in this context, the Langevin equation becomes a sto-
chastic differential equation which uses Markov chains to specify a
possible increment dui in the fluid velocity fluctuation:

dui ¼ �uiðtÞ
dt
si
þ ri

ffiffiffiffi
2
si

s
� dni ð6Þ

The incremental displacement dxi during a time dt is thus:

dxi ¼ ðUi þ uiÞdt ð7Þ

In the above, si is a timescale, ri the fluctuating rms of velocityffiffiffiffiffi
�u2

i

q
; xi the ith coordinate, and dni a succession of uncorrelated ran-

dom numbers with zero mean and variance dt. It is usual to assume
the ni distribution to be Gaussian, which will be the case in this
investigation.

As stressed by Iliopoulos and Hanratty (1999), the Langevin
equation is not exact and only comparison with experiments or
DNS results will allow one to conclude to its usefulness.

The Langevin equation was extensively used to model homoge-
neous turbulence where the rms values and Lagrangian time scales
are position independent. In wall-bounded flow, however, turbu-
lence is strongly inhomogeneous and anisotropic in the boundary
layer, which implies some modification of the Langevin equation
is in order.

Several authors have attempted to take turbulent inhomogene-
ity into account. For instance, Legg and Raupach (1982) proposed
that the wall-normal velocity fluctuations a fluid particle sees in
the boundary layer be governed by the following equation for stea-
dy-state fully developed channel flows:

du2 ¼ �u2
dt
s2
þ r2

ffiffiffiffiffi
2
s2

s
� dn2 þ

or2
2

ox2
� dt ð8Þ

In such a treatment, the last term is added as a mean drift cor-
rection that ensures that tracer-like particles will, on average, fol-
low streamlines in inhomogeneous flows. In DRW or CRW
simulations, the non-inclusion of this correction term results in
non-physical diffusion of tracer particles with errors as high as
550% for simple flows, as shown by MacInnes and Bracco (1992),
while its inclusion dramatically decreases the error for idealized
inhomogeneous flows (Bocksell and Loth, 2001).

The correction for tracer particles can be shown to be necessary
from the following simple analysis. Let us start from the instanta-
neous acceleration ai of a fluid particle:
ai ¼ Uj
oUi

oxj
ð9Þ

where the Einstein convention of summing up over repeated indices
is adopted. Expressing the instantaneous velocity as the sum of the
mean and fluctuating parts, one writes

Ui ¼ Ui þ ui ð10Þ

where, by definition:

ui ¼ 0 ð11Þ

The mean acceleration is obtained by inserting (10) in (9), and aver-
aging over time while making use of (11). After algebraic manipula-
tions, one gets

�ai ¼ �ai;mean þ �ai;drift ¼ Uj
oUi

oxj
þ uj

oui

oxj
ð12Þ

One can therefore break down the mean acceleration of a fluid
particle into a component due to the mean flow, and a component
due to random turbulent fluctuations in an inhomogeneous flow
field. The drift acceleration gives rise then to a drift velocity that
one needs to add in the Langevin equation to take into account tur-
bulence inhomogeneities:

dui ¼ uj
oui

oxj
� dt ¼ ouiuj

oxj
� dt ð13Þ

To arrive at the second equality in (13), it is necessary to assume a
divergence-free fluctuating velocity field, which is reasonable for
the incompressible flows addressed in this investigation. The form
taken by the correction depends on the particular flow conditions.
In the wall-normal direction of the boundary layer, the fully-devel-
oped assumption results in the wall-normal derivative of r2

2 ¼ u2u2

to be dominant in the right hand side of Eq. (13), hence the form of
the drift correction in the conventional Langevin equation (8).

The drift correction velocity as expressed in (13) is in principle
applicable only to tracer particles which perfectly follow the fluid
fluctuations. Perkins (1992) and later Pozorski and Minier (1998)
suggested adjusting the Lagrangian time scale si to account for
the fact that inertial particles do not exactly follow the fluid
streamlines. A simpler approach was followed by Iliopoulos et al.
(2003) who assumed that the fluid velocity seen by inertial parti-
cles is the same as that seen by fluid particles, and hence the drift
correction in (13) applies to inertial particles as well to a first
approximation. A more rigorous analysis was performed by Bocks-
ell and Loth (2006) who derived a drift correction that applies to
particles with arbitrary inertia. Using the instantaneous accelera-
tion of a fluid particle along the path of an inertial particle, Bocksell
and Loth (2006) showed that the drift correction for an inertial par-
ticle can be obtained from the drift correction of a fluid particle
through a multiplicative factor as follows:

dui ¼
ouiuj

oxj
� 1

1þ Stk

� �
� dt ð14Þ

where the particle Stokes number is defined as

Stk ¼ sp

sL
ð15Þ

In the above, sL is a Lagrangian time scale to be specified later in
Section 6, and sp the particle relaxation time defined according to
the prevailing particle Reynolds number:

sp ¼
Ccqpd2

p

18l
; Rep 6 1 ð16Þ

and

sp ¼
4
3

qp

qf

Ccd2
p

CD j U � Up j
; Rep > 1 ð17Þ
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Cc is the Cunningham correction slip factor which is very close to
one for particles with diameters above 1 lm. Eq. (14) is valid pro-
vided the particle gravitational settling velocity is much smaller
than the fluid velocity fluctuations (Bocksell and Loth, 2006).

From (14), one notes that the inertial particle drift correction
behaves correctly at the extremes, i.e. for very large Stokes num-
bers, the fluctuating flow field and particle motion are decoupled,
hence the drift correction tends to zero, whereas for non-inertial
particles with Stokes number close to 0, the tracer correction limit
holds and (14) reduces to (13).

4. The normalized Langevin equation in boundary layers

While providing better results in inhomogeneous flows than
DRW models, the predictions of the CRW model based on the con-
ventional Langevin equation (8) are not completely satisfactory
(Bocksell and Loth, 2001). A significant step forward was made
when Durbin (1983, 1984) and Thompson (1984), following the
ideas of Wilson et al. (1981), proposed that the Langevin equation
be normalized to account for inhomogeneous turbulence in the
wall normal direction of a boundary layer. Following Iliopoulos
et al. (2003), the normalized Langevin equation can thus be written
as

d
ui

ri

� �
¼ � ui

ri

� �
� dt
si
þ dgi þ Aidt ð18Þ

In the boundary layer, where the subscripts 1, 2 and 3 stand for
streamwise, wall-normal and spanwise directions, respectively,
one has

Ai ¼
o

u2ui
ri

� �
ox2

ð19Þ

while, to a first order, the forcing moments can be expressed as

dgidgj ¼
uiuj

rirj

1
si
þ 1

sj

� �
� dt ð20Þ

where overbar in the above expressions means time averages. Eq.
(20) is obtained assuming jointly Gaussian distributions for the
forcing terms gi (Mito and Hanratty, 2002).

In the normalized Langevin equation (18), Ai is the mean drift
correction term. In fact, for the wall normal direction, A2 reduces
to or2/ox2 and is the counterpart of the term or2

2=ox2 in the conven-
tional Langevin equation (8), as demonstrated earlier by Wilson et
al. (1981). Thompson (1987) showed that the inclusion the drift
correction Ai fulfills the well-mixed criterion, i.e. that tracers which
are initially well mixed in the inhomogeneous turbulent flow will
remain well mixed. This was later also verified by Mito and Hanr-
atty (2002) for fluid particles originating from uniformly distrib-
uted sources in channel flow boundary layers. Following Mito
and Hanratty (2004), A3 is set to zero.

From the preceding sections, the normalized Langevin equation
with the inertial particle drift correction can be written as follows
for the streamwise, normal, and spanwise directions of the bound-
ary layer:

d
u1

r1

� �
¼ � u1

r1

� �
� dt
s1
þ

ffiffiffiffiffi
2
s1

s
� dn1 þ

o u1u2
r1

� �
ox2

� dt
1þ Stk

ð21Þ

d
u2

r2

� �
¼ � u2

r2

� �
� dt
s2
þ

ffiffiffiffiffi
2
s2

s
� dn2 þ

or2

ox2
� dt
1þ Stk

ð22Þ

d
u3

r3

� �
¼ � u3

r3

� �
� dt
s3
þ

ffiffiffiffiffi
2
s3

s
� dn3 ð23Þ

where the timescales si will be addressed later in Section 6.
5. The normalized Langevin equation in the isotropic bulk

In the bulk region, where turbulence is approximately isotropic,
the Langevin equations remain of the same form for the damping
and stochastic terms. However, a simpler formulation is required
for the drift correction terms. Following Bocksell and Loth (2006),
the normalized incremental drift correction along a particle path
is expressed as follows:

d
ui

ri

� �
¼ uj

o
ui
ri

� �
oxj
� dt
1þ Stk

ð24Þ

Taking into account only the terms involving the normal stres-
ses, and ignoring the cross terms in Eq. (24) as second order effects,
one can show, with the help of the second equality in (13) that the
drift correction reduces to

d
ui

ri

� �
¼ uj

o
ui
ri

� �
oxj
� dt
1þ Stk

ffi 1
2ri

or2
i

oxi
� dt
1þ Stk

ð25Þ

Invoking isotropic turbulence in the bulk, one has

r ¼ r1 ¼ r2 ¼ r3 ¼
ffiffiffiffiffiffiffiffiffi
2
3
� k

r
ð26Þ

Therefore, the drift correction in the isotropic bulk becomes

d
ui

ri

� �
¼ uj

o
ui
ri

� �
oxj
� dt
1þ Stk

ffi 1
3r

ok
oxi
� dt
1þ Stk

ð27Þ

The turbulent kinetic energy k is readily available since it is one of
the variables solved for by CFD codes.

In keeping up with the normalization of the Langevin equation,
and adding the effect of particle inertia, one obtains the following
equations for the bulk region with isotropic inhomogeneous
turbulence:

d
u1

r

� �
¼ � u1

r

� �
� dt
sL
þ

ffiffiffiffi
2
sL

s
� dn1 þ

1
3r
� ok
ox1
� dt
1þ Stk

ð28Þ

d
u2

r

� �
¼ � u2

r

� �
� dt
sL
þ

ffiffiffiffi
2
sL

s
� dn2 þ

1
3r
� ok
ox2
� dt
1þ Stk

ð29Þ

d
u3

r

� �
¼ � u3

r

� �
� dt
sL
þ

ffiffiffiffi
2
sL

s
� dn3 þ

1
3r
� ok
ox3
� dt
1þ Stk

ð30Þ

The timescales are sL are taken to be equal in all directions, in accor-
dance with the isotropic turbulence assumption.

Eqs. (21)–(23) and (28)–(30) represent possible changes of the
turbulent fluid velocities in the boundary layer and bulk region,
respectively. The integration of these equations in time is done
using the first order implicit Euler method, and the dynamic time
step is taken to be min (10�6 s, 0.1sp), which was small enough
not to affect the results. Hence, at each time step, u(t + Dt) is ob-
tained given u(t). The integration of the equations requires the
specification of the Lagrangain time scales and Eulerian statistics,
which is done in the next sections.

6. Specification the time scales

The normalized Langevin equation as written in (18) allows for
the spatial variation of ri and si, i.e. inhomogeneous turbulence. As
noted by Iliopoulos and Hanratty (1999), the time scale si can be
rigorously defined only in homogeneous turbulence. For inhomo-
geneous turbulence, some researchers estimate si from the Eulere-
an spectra of fluctuating velocities, while others derive it from
Lagrangian calculations, e.g., by tracking fluid particles in DNS sim-
ulations, and evaluating the Lagrangian autocorrelations. Bocksell
and Loth (2006) have performed such computations in boundary
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layer flows using 4000 tracer particles and concluded that their
Lagrangian time scale correlations in all directions are comparable
and reasonably well approximated by the fits provided by Kallio
and Reeks (1989).

sþL ¼ 10; yþ 6 5 ð31Þ
sþL ¼ 7:122þ 0:5731 � yþ � 0:00129 � yþ2; 5 6 yþ 6 100 ð32Þ

where

sL ¼ sþL �
m

ðu�Þ2
ð33Þ

In the above expression, y+ is the wall distance in dimensionless
units:

yþ ¼ yu�

m
ð34Þ

and u* is the friction velocity at the wall defined by

u� ¼
ffiffiffiffiffi
sw

qf

r
ð35Þ

where sw is the local wall shear stress.
For simplicity, and following the findings of Bocksell and Loth

(2006), it will be assumed hereafter that the boundary layer
Lagrangian timescales in all 3 directions (s1,s2, s3) are all equal to sL.

Away from the boundary layer, i.e. in the bulk flow where
y+ > 100, the Lagrangian time scale can be calculated from the tur-
bulent kinetic energy k and dissipation rate e:

sL ¼
2
Co
� k
e

ð36Þ

Mito and Hanratty (2002) concluded that away from the wall
region, a value of 14 for C0 provided good agreement with time
scales computed from their DNS investigations. In the context of
this work, k and e are obtained from CFD computations of the mean
flow field.

7. Specification of Eulerian statistics in the boundary layer

In the boundary layer, taken here to be the region for which
y+ < 100, the Eulerian rms of velocity are obtained from DNS fits
of channel flow (Re = 13000) obtained by Dreeben and Pope (1997):

rþ1 �
r1

u�
¼ 0:40 � yþ

1þ 0:0239ðyþÞ1:496 ð37Þ

rþ2 �
r2

u�
¼ 0:0116 � ðyþÞ2

1þ 0:203 � yþ þ 0:00140ðyþÞ2:421 ð38Þ

rþ3 �
r3

u�
¼ 0:19 � yþ

1þ 0:0361ðyþÞ1:322 ð39Þ
Fig. 1. rms of velocity components in the boundary layer.
Although these fits are not universal, they are found to be only
slightly dependant on the Reynolds number for predominantly two
dimensional flows (Antonia et al., 1992), and should therefore pro-
vide better results than the default CFD code model which typically
assumes isotropic turbulence all the way to the wall. The rms val-
ues of velocity are plotted in Fig. 1. One clearly sees in particular
that the wall normal fluctuations are very much smaller than the
streamwise and spanwise components in the laminar sublayer.

The drift correction term in the streamwise direction (Eq. 21) in
not readily available from the DNS literature. It is set here to zero,
which should not alter the predictions significantly since it is the
turbulent motion in the wall normal direction which controls the
overall particle dispersion and deposition physics.
8. Application of the model in general geometries

Particle diffusion is usually studied in simple geometries such
as parallel channels or pipes. To be of more practical interest, the
current model is extended to handle arbitrary geometries in 3D.
Mean flow data are supplied by CFD type codes with appropriate
turbulence models. The procedure to use the Langevin equations
to obtain the fluctuating velocities in general geometries is de-
scribed next. In this procedure, it is assumed that the rms velocity
values in complicated geometries can locally be approximated by
the available DNS data for fully developed flows in simple channel
geometry. While clearly an approximation, the latter assumption
should provide a closer prediction of reality than taking turbulence
to be isotropic throughout the domain.

The algorithm is schematically described by the flowchart in
Fig. 2. At any time t during the trajectory integration, the particle
distance to the nearest wall and its associated y+ are computed.
If the particle is inside the boundary layer, as in shown in Fig. 3
(in 2D for simplicity of illustration), a body fitted coordinate sys-
tem (BFCS) is determined at the particle location based on the
nearest wall face. In the BFCS, the streamwise unit vector is ob-
tained by normalizing the local mean velocity vector at the particle
location, while the normal unit vector is obtained from the vector
normal to the nearest wall face. Finally, the spanwise unit vector is
just the cross product of the abovementioned unit vectors. The rms
of velocities are computed in the BFCS according to Eqs. (37)–(39),
and one then computes in the BFCS the new fluctuating velocity
vector at time (t + Dt) as specified by Eqs. (21)–(23).

Next, the fluctuating velocity components are transformed back
to the computational coordinates system (CCS), and added to the
mean velocities so that the particle tracking can be performed
one additional time-step. This propels the particle to a new posi-
tion at t + Dt (see Fig. 3), with, depending on the cases, a new BFCS.
The procedure described above is then repeated as long as
necessary.

If the particle is in the bulk region, the Langevin equations for
isotropic turbulence (Eqs. (28)–(30) are advanced in time directly
in the CCS, and then the fluctuating values are added to the mean
velocities to allow the trajectory calculations to be advanced one
additional time step.

The computation for a particular particle continues until the
particle is trapped by the wall or leaves the computational domain.
9. Implementation of the CRW model in the Fluent code

The Fluent CFD code (Fluent, 2006) provides the mean flow
parameters as well as a facility to integrate the particle equations
of motion. The stochastic model described in earlier sections was
implemented in Fluent as a User Defined Function (UDF) subrou-
tine which supplies the trajectory calculation module with the
fluctuating fluid velocity seen by a particle at each time step. For
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that purpose, a pre-processing step is necessary before performing
the trajectory computation, and this consists in determining the
wall face which has the shortest distance to the centroid of any cell
in the domain (first step in flow chart Fig. 2). The latter calculation
is performed just once for any converged solution, but it can some-
times be quite CPU intensive, especially for mesh sizes greater than
1 million.

10. Results and discussion

The CRW Langevin model just outlined was used to verify the
well-mixed criterion, then extensive benchmarks were conducted
against particle deposition data is simple pipe flows, 90� bends,
and finally an idealized 3D geometry of a human mouth-throat.

10.1. Verification of the well-mixed criterion

One of the most stringent tests for any turbulent dispersion
model is the so-called well-mixed criterion, that is, the require-
ment that very low inertia particles which are uniformly mixed
in the domain should remain well mixed as time evolves. For this
particular benchmark, a pipe flow with a Reynolds number equal-
ing 10000 was chosen. The fluid is air at atmospheric conditions,
and the pipe diameter and length are 0.01 m and 0.1 m, respec-
tively, while the mean inlet velocity is 14.6 m/s. Periodic boundary
conditions are imposed on the inlet and outlet of the pipe, hence
ensuring a fully developed flow field. The CFD mesh consists of
about 1 million hexahedral cells, and the centroid of the wall near-
est cell has a y+ of about 1. There are 20 cells within the boundary
layer (y+ <100), in accordance with the CFD Best Practice Guide-
lines for enhanced wall treatment (ERCOFTAC, 2000). The flow con-
ditions are such that 2/3 of the cross sectional area is in the
boundary layer, whereas the remaining 1/3 is in the bulk region.

The turbulence model used is the standard k–e. After the second
order accurate mean flow solution is converged, 10000 tracer
spherical particles with diameter 0.7 lm and unit density are uni-
formly injected with the mean fluid velocity at the entrance face.
The particles have a dimensionless relaxation time sþp of 0.11
where

sþp ¼
spu�2

m
ð40Þ

Particles which reach the pipe outlet are re-injected from the
inlet with their latest velocity values, in compliance with the peri-
odic boundary conditions. The distribution of particles at later
times is determined as follows: the volume of the pipe is subdi-
vided in 10 concentric annuli with equal volumes, then, at a given
time t+, the number of particles in each annulus is counted, and the
concentration profile is obtained by normalizing the number of
particles in each bin with the total number of particles in the do-
main. On impact with the wall, particles are reflected. In a first
computation, the drift correction in the Langevin equations is not
considered. In Fig. 4, the particle distribution is displayed for times
t+ = 3, and 10, where t+ = 1 corresponds to the mean time required
by a fluid particle to travel across the pipe length. One clearly sees
a non-physical concentration build-up in the boundary layer,
known as the ‘‘spurious drift” (MacInnes and Bracco, 1992). This
build-up also gets worse with time and many impacts with the
wall are recorded. In contrast, when the drift correction is used,
the particles are roughly uniformly distributed in the domain as
shown in Fig. 5, and this result is holds at long times. In addition,
the number of impacts with the wall is virtually zero. The slight
peak at a z/R of about 0.3 coincides with the transition between
the boundary layer and the bulk flow, and may be due to the dis-
continuity between the time scales in the two regions at y+ of
100. Still, the normalized concentrations have a mean deviation
from the ideal result of only 13 %, and hence, the well-mixed crite-



Fig. 4. Normalized concentration of tracer particles. No drift correction.

Fig. 5. Normalized concentration of tracer particles. With drift correction.

Fig. 6. Comparison for pipe deposition velocity at Re = 10000.

Fig. 7. Comparison for pipe deposition velocity at Re = 50000.
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rion is met with a good degree of accuracy. These results show that
it is very important to include the drift corrections to avoid errone-
ous predictions for low-inertia particle dispersion.

10.2. Turbulent deposition in pipe flow

The deposition of particles in turbulent vertical pipe flows has
been experimentally studied by a number of authors. McCoy and
Hanratty (1977) gathered a large database from various investiga-
tions and proposed the following best fit for the dimensionless
deposition velocity V+ as a function of the dimensionless relaxation
time sþp :

Vþ ¼ 0:000325 � sþ2
p ; 0:2 6 sþp 6 22:9 ð41Þ

Vþ ¼ 0:17; sþp > 22:9 ð42Þ

where the dimensionless deposition velocity for a pipe of diameter
D and length L is defined as

Vþ ¼ 1
4

D
L

U
u�

ln
Cin

Cout

� �
ð43Þ

D and L are the pipe diameter and length, respectively, while the
C’s refer to particle number concentrations.

A CFD grid was prepared based on the geometry and test condi-
tions of the well known experiments by Liu and Agarwal (1974).
The latter authors measured the deposition of 1.4–21 lm diameter
olive oil particles injected in a vertical glass pipe of diameter
1.27 cm and length 1 m. Deposition data is presented for the por-
tion of the pipe section between 0.255 m and 0.763 m (0.508 m),
i.e. in the region where the flow is fully developed and far enough
from the outlet. Two sets of mean gas velocities are used, that is
12 m/s and 62 m/s, which correspond to Reynolds numbers of
approximately 10000 and 50000, respectively.

In the CFD simulation, two sets of 3D hexahedral meshes are
generated for the two Reynolds number cases. For this simple flow
case, the standard k–e turbulence model is used, along with en-
hanced wall treatment. The near-wall cell has a y+ less than 1,
and there are about 30 cells inside the boundary layer, so the latter
is very well resolved. Once the second order accurate CFD solution
is reached, the CRW Lagrangian tracking is performed by following
the paths of 10000 spherical particles of density 920 kg/m3 uni-
formly distributed over the inlet face. The particles are assigned
the gas velocity at the time of release. The chosen number of par-
ticles of 10000 is adequate, as preliminary simulations with larger
numbers of particles showed no change in the deposition rate be-
yond 5000 particles. A particle is considered deposited when its
center of mass is located less than one particle radius from the
nearest wall.

The particle deposition results are shown in Figs. 6 and 7 for the
two Reynolds numbers of 10000 and 50000, respectively. The CRW
model predicts quite well both the trends and the magnitude of



Fig. 8. Comparison for 90� bend deposition at Re = 4080.
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deposition. In general, the CRW deposition rates lie between those
of the McCoy and Hanratty fits and the Liu and Agarwal data.

It should to be noted that the spatial resolution for LPT needs to
be significantly finer than what is required to obtain grid indepen-
dent results for the flow field. For instance, a mesh with 0.5 million
cells was adequate to produce a grid-independent flow field for
both cases. However, it was necessary to have about 4.4 million
cells for Re = 10000 and 6.0 million cells for Re = 50000 to reach
grid-independent results for particle deposition. This is directly re-
lated to two facts: firstly, LPT calculations involve heavy interpola-
tions, as particles almost never coincide with the grid locations,
and secondly, the grid resolution at the curved wall should be fine
enough that the smallest particles ‘‘see” no kinks at the junction
between two neighboring wall faces, otherwise, they may artifi-
cially deposit when they should not necessarily do so had the
neighboring wall surfaces been smoothly connected.

10.3. Turbulent deposition in 90� bends

Experimental studies of deposition in bends have largely con-
centrated on laminar flow. To the best of the author’s knowledge,
the only two published experimental works performed in turbu-
lent conditions are due to Pui et al. (1987) and McFarland et al.
(1997) who measured the penetration of particles through bends
with diameters on the order of 1–2 cm. Both experiments predict
similar deposition rates, so we restrict ourselves here to the work
of Pui et al. (1987) who provided the following correlation for the
best fit through their data:

/ ¼ 1� Cout

Cin
¼ 1� expð�2:823 � Stk � hÞ ð44Þ

where / is the deposited fraction, the C’s the inlet and outlet aerosol
concentrations, respectively, h the bend angle in radians, and Stk the
particle Stokes number defined as

Stk ¼ spU
D

ð45Þ

in which U is the mean gas velocity in the pipe, D is the pipe diam-
eter, and sp the particle relaxation time defined earlier. No specific
uncertainty is given, but the data is enveloped by the correlation
within a 30% band. The bend represents an interesting geometry,
because unlike what happens in a straight pipe, deposition on a
bend is caused by two processes instead of one, namely inertial
impaction, which is dominant and turbulent dispersion, which is
an enhancement mechanism.

A generic 90� bend section with 2 cm diameter and radius of
curvature 4.0 is modeled The domain includes a straight inlet pipe
with a 5 D developing length as well as an outlet straight section
with 5 D length. A 3.0 m/s velocity boundary condition
(Re = 4080) is imposed at the inlet, and a 0 gauge pressure is im-
posed at the outlet. The hexahedral mesh has 0.8 million cells
and is fine enough to resolve the boundary layer and produce grid
independent results for the particle tracking. The Reynolds Stress
Model (RSM) is used for modeling the mean turbulence, along with
enhanced wall treatment and second order accuracy. Particle
tracking is conducted by releasing 10000 uniformly distributed
unit density particles from the entrance face of the bend. Particle
deposition is recorded for the bend as well as the outlet straight
section, because the effect of the bend is felt beyond the bend itself.
Moreover, the McCoy & Hanratty correlation (1977) shows that for
the conditions of this simulation, no deposition will take place on
the 5 D outlet straight section in the absence of the bend. Hence
the deposition in the entire domain can be solely attributed to
the presence of the bend.

Comparison between the correlation and both the CRW and
‘‘mean tracking” model is shown in Fig. 8. Mean flow tracking in-
volves using the mean flow velocities from the CFD solver without
adding the contribution of turbulence. As can be seen, the agree-
ment between the data and the CRW model is excellent across
the range of particle inertia. The mean flow tracking shows good
agreement with the Pui correlation for low and high inertia parti-
cles. This is expected, since low and high inertia particles are only
slightly affected by turbulence. For mid-range inertia particles, the
turbulent fluctuations are responsible for enhanced particle depo-
sition, and this is very well predicted only by the CRW model.

10.4. Turbulent deposition in 3D mouth-throat geometry

There is only scarce data relating to particle deposition in com-
plex three dimensional turbulent flows. Among the available data
is information relative to medical aerosol removal rates in the hu-
man extrathoracic region encompassing the mouth, the pharynx,
the larynx and the trachea. Aerosol deposition in those regions is
unwelcome because the medication is meant for the lungs which
are located further downstream. Good quality, albeit limited data
was recently provided by Grgic et al. (2004) who measured the re-
moval of 3, 5 and 6.5 lm DEHS oil particles (density 912 kg/m3) in
an idealized mouth-throat geometry (Fig. 9). The latter was con-
structed from tomographic scans of many adult patients with no
apparent abnormalities (DeHaan and Finlay, 2001). Grgic et al.
(2004) used two distinct flow rates, i.e. 30 and 90 l/min. For 30 l/
min, the flow is transitional to slightly turbulent, with a Reynolds
number on the order of 2700 based on the entrance pipe diameter
of 17 mm. For 90 l/min, the flow is turbulent, and the Reynolds
number is of the order of 8000.

Because of the complicated 3D geometry, a hybrid CFD mesh is
used. This consists of four prism layers near the wall, a tetrahedral
mesh in the bulk, and a pyramid mesh layer in the transition re-
gion. The original mesh has 1.1 millions cells in order to resolve
the boundary layer such that the RSM model with enhanced wall
treatment can be used. For these conditions, it is required that
the wall-nearest cell centroid have a y+ of order 1. A second mesh
having 3.3 million cells is generated in order to ensure that the re-
sults are grid-independent. Both meshes gave virtually identical
results for the particle deposition. A flat velocity profile is imposed
on the inlet face of a short 17 mm diameter pipe which provides a
fully developed flow into the mouth-throat section. A 0 gauge pres-
sure is imposed on the outlet face.

Once the second order accurate mean flow solution is con-
verged, 10000 particles are injected uniformly at the entrance face,
and the recorded deposition fractions are as shown in Table 1 for a
flow rate of 90 lpm. These are compared with the Grgic et al. (2004)



Fig. 9. Schematic of the Alberta mouth-throat geometry.

Table 1
Deposition fraction (%) in the mouth-throat geometry at a flowrate of 90 lpm

Particle diameter (lm) Data by Grgic et al. CRW model Mean flow tracking

3.0 33 ± 5 23.4 4.0
5.0 68 ± 3 59.5 17.2
6.5 78 ± 3 80.1 33.0

Table 2
Deposition fraction (%) in the mouth-throat geometry at a flowrate of 30 lpm

Particle diameter (lm) Data by Grgic et al. CRW model Mean flow tracking

3.0 2 ± 2 6.4 4.4
5.0 11 ± 3 11.8 4.1
6.5 32 ± 3 21.6 5.8
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data as well as the mean flow tracking results. The deposition pre-
dictions of the CRW model are in quite good agreement with the
data. In contrast, the mean flow tracking underpredicts the deposi-
tion rate significantly, as the enhancing effects of turbulence are
not taken into account.

Grgic et al. (2004) found that their data at a flow rate of 90 lpm
was in close agreement with the best fit by Stahlhofen et al. (1989).
The latter had produced their fit from a large number of experi-
mental investigations, and displayed the deposition fraction as a
function of the particle inertial parameter qpd2

pQ , where Q is the
volumetric flow rate. The model predictions at 90 lpm were subse-
quently compared to the Stahlhofen fit for a wide range of particle
diameters as shown in Fig. 10. As can be seen, the agreement be-
Fig. 10. Model prediction versus Stahlhofen correlation.
tween the model and the Stahlhofen fit is very good over the whole
range of particle inertia.

In a second simulation, the model was compared with the Grgic
et al. (2004) data at a flow rate of 30 lpm. The results are shown in
Table 2. Again, the prediction of the CRW compare favorably with
the data, whereas the mean flow tracking largely underpredicts the
deposition rate.

11. Conclusions

A Lagrangian continuous random walk (CRW) model is devel-
oped to predict particle dispersion in arbitrary wall-bounded
geometries with prevailing anisotropic, inhomogeneous turbu-
lence. The particle tracking model relies on 3D mean flow data pro-
vided by the Fluent CFD code, as well as Eulerian statistics
computed from DNS databases. The time history of the fluctuating
fluid velocities is obtained from the normalized Langevin equation
which takes into account turbulence inhomogeneities. The model
incorporates a drift velocity correction for arbitrary inertia parti-
cles. Using this correction, it is shown that tracer particles remain
largely well-mixed if introduced uniformly in the domain. Bench-
marks of the model are performed against particle deposition data
in simple turbulent pipe flows, 90� bends, as well as more complex
3D flows inside an idealized mouth-throat geometry. Good agree-
ment with the data is obtained across the range of particle inertia.
Overall, it is shown that Lagrangian CRW, coupled with DNS Eule-
rian statistics and CFD mean flow data, is able to properly predict
the main features of turbulent particle dispersion in general geom-
etries with inhomogeneous turbulence. This pleads in favor of
incorporating such enhanced CRW models in CFD codes to accu-
rately describe turbulent particle dispersion in general geometries.
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